
In line with the Save Energy Communication, Croatia launched new
To deliver on this commitment, the EU has set binding climate and energy targets
Croatia supports a wide range of technologies for electricity generation,
Energy in Croatia describes energy and electricity production, consumption and import in Croatia.
As of 2023, Croatia imported about 54.54% of the total energy consumed annually: 78.34% of its oil demand, 74.48% of its gas and 100% of its coal needs.[1]
Croatia satisfies its electricity needs largely from hydro and thermal power plants, and partly from the Krško nuclear power plant, which is co-owned by Croatian and Slovenian state-owned power companies. Renewable energies account for approximately 31.33% of Croatia''s energy mix.[1]
Hrvatska elektroprivreda (HEP) is the national energy company charged with production, transmission and distribution of electricity.
At the end of 2022, the total available power of power plants on the territory of the Republic of Croatia was 4,946.8 MW, of which 1,534.6 MW in thermal power plants, 2,203.4 MW in hydropower plants, 986.9 MW in wind power plants and 222.0 MW in solar power plants. For the needs of the electric power system of the Republic of Croatia, 348 MW from NPP Krško is also used (ie. 50% of the total available power of the power plant in accordance with the ownership shares).[2]
Croatia has 28 hydropower plants of which 2 are reversible, 2 small size and 1 pumped storage. They are distributed in three production areas: North, West and South with one independent plant, and are HEP''s most important source of renewable energy.[3]
Most of Croatian wind energy is produced by companies in private ownership for difference of other types of energy production. Out of 25 wind firms only one is owned by HEP (VE Korlat) while others are mainly owned by private companies or foreign energy corporations.[4]
There are 7 thermal power plants of which 4 are also heating plants and one is combined cycle power plant.[11] Additionally, the first geothermal power plant was opened in 2019, but there are projects and potential for new ones.[12]
Five biopower plants are now located in Croatia and they are also used for heating purposes.[13][14][15][16]
Croatia has no nuclear power plants on its territory, but co-owns the Krško Nuclear Power Plant together with Slovenia. The Krško plant was built in the era of Yugoslavia on the territory of present-day Slovenia. Planned decommissioning is by 2043.[17]
Croatian transmission grid consists of lines on three different rated voltage levels, namely 400, 220 and 110 kV. Total length of high-voltage lines is 7,763.53 km (4,824.03 mi) while length of medium and low voltage lines is 141,936.9 km (88,195.50 mi).[23]
The grid was often the target of attacks during Croatian War of Independence, resulting in frequent black-outs during the period. Since then, the grid has been repaired, and reconnected to synchronous grid of Continental Europe synchronous zones 1 and 2, making it an important transit system again.[24]
Under the 2004 Energy law, customers in Croatia are allowed to choose their preferred distributor of electricity. However, HEP Operator distribucijskog sustava or HEP-ODS (a Hrvatska elektroprivreda subsidiary) remains the largest distributor to both industry and households. Its distribution grid is 142,365 km (88,461.51 mi) long, with 26 859 transformers installed, totaling 23,421 MVA of power.[23]
In 2022 there were 2,133,522 customers, 95.8% of which were households.[25]
With the implementation of the project HE Senj 2, HEP intends to use the remaining hydro potential in the Lika and Gacka basins by upgrading the existing hydropower system. The project involves the construction of a large reservoir and additional capacity in order to transfer production to the top of the daily chart. This will enable the capacity to inject high regulatory power into the power system with flexible hydro units ready for rapid power change. The construction of the hydroelectric power plant will cost 3.4 billion kuna and will have an installed capacity of 412 MW, while the construction deadline is 2028.[26]
The European Bank for Reconstruction and Development (EBRD) will grant a loan of EUR 43 million to the company Kunovac, jointly owned by the funds Taaleri Energia SolarWind II and ENCRO Kunovac, for the construction and operation of two onshore wind farms in the Zadar region. Zagrebačka banka and Croatian bank for reconstruction and development will participate in the financing with a total loan amount of 126 million euros, and the total network capacity of the two power plants is 111 megawatts, which is enough to power 85,000 households.[29]
In January 2023, the Greek energy company EuroEnergy announced that it was taking over the 114 MW wind farm project in Lika-Senj County. The acquisition reserves the right to expand with an additional 70.5 MW of wind capacity, subject to grid upgrades that can increase production. The value of the project is EUR 150 million and will be realized in the area of Udbina.[30]
In December 2019, the project of building a new high-efficiency combi-cogeneration unit KKE EL-TO Zagreb began, electric power 150 MW. The construction lasts for three years, and this project will replace part of the dilapidated and obsolete units at the EL-TO Zagreb location.[32] It is expected for a unit to start working in the summer of 2023.
In 1978, the Adriatic island of Vir was selected as a location for a future nuclear power plant, but these plans were abandoned.[33]
According to reports, since 2009 Croatia has been discussing the option of building a nuclear power plant with Albania, in a location on the shore of Shkodër Lake, on the border with Albania and Montenegro. In April 2009 the Croatian government denied that any agreement had been signed.[34]
In a 2012 poll among 447 Croatian citizens, who were asked "Do you think it is justified to use nuclear energy for the production of electricity?", 42% answered "yes" and 44% answered "no".[35]
In 2021 the Slovenian government has issued an energy permit to GEN Energija for the planning and construction of the second unit of the Krško Nuclear Power Plant, followed by a statement by the Minister of Economy and Sustainable Development of Croatia Tomislav Ćorić that Croatia "will not look benevolently at the construction of the new bloc".[36] In March 2022, Plenković confirmed Croatia''s readiness to enter the project of building the second block of the Krško NPP.[37]
As of 2021, Croatia had 100 MW of solar power, providing 0.4% of electricity. The potential for solar energy in Croatia is estimated at 6.8 GW, of which 5.3 GW would be accounted for by utility-scale photovoltaic plants and 1.5 GW by rooftop solar systems.[38] Croatia plans to install 1.5 GW of solar capacity by 2024.[39] The total solar power grid-connected capacity in Croatia was 461 MW as 2023.[27]
In May 2023, Acciona Energy announced the construction of the largest solar power plant in Croatia. The new power plant will be spread over three million square meters of rugged state land and will have a capacity of 150 MW, which is enough to meet the needs of around 100,000 households. Its official name is SE Promina.[8]
In September 2022, the European Commission approved state support in the amount of 19.8 million euros for the project of building a large-capacity battery system. The project will be built in Šibenik, and will enter into operation in 2023 with a capacity of 10 MW, and ultimately the capacity will be 50 MW.[40]
The results of the geothermal potential research showed that the Virovitica-Podravina County lies on a geothermal basin. The value of the Geothermal Potential Research project in Virovitica-Podravine County, which began in 2019, amounts to 304,169 euros. Therefore, the construction of a geothermal power plant with a capacity of 20 megawatts is planned in that area, which has the potential to become the largest such power plant in Europe. It is designed up to 1,300 meters, and hot water is expected already at 600 meters. An exploratory well was completed in the area of Čađavica, which discovered a geothermal source at a depth of 4,300 meters. The areas of Orahovica, Slatina and Nova Bukovica also have geothermal potential.[41]
About Croatia energy efficiency
As the photovoltaic (PV) industry continues to evolve, advancements in Croatia energy efficiency have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Croatia energy efficiency for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Croatia energy efficiency featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.
Related Contents