Use of renewable energy sources can replace

Scientist turns to zinnias, roadside weeds, other plants to create efficient biofuels
Contact online >>

Scientist turns to zinnias, roadside weeds, other plants to create efficient biofuels

WEST LAFAYETTE, Ind. — As global temperatures and energy demand rise simultaneously, the search for sustainable fuel sources is more urgent than ever. But how can renewable energy possibly scale up to replace the vast quantities of oil and gas we consume?

Plant power is a significant piece of the answer, says Purdue scientist Maureen McCann.

“Plants are the basis of the future bioeconomy,” she says. “In my mind, building a sustainable economy means we stop digging carbon out of ground and begin to make use of one and a half billion tons of biomass available in the U.S. on an annual basis. That''s the strategic carbon reserve that we need to exploit in order to displace oil.”

McCann is a professor of biological sciences, former director of the Energy Center at Purdue’s Discovery Park, and president-elect of the American Society of Plant Biologists. She has spent her academic career looking at plant cell walls, which contain some of the most complicated molecules in nature. By studying a wide range of plants — from poplar trees to zinnias — ­her lab has characterized hundreds of plant genes and their products in an effort to understand how they all interact and how they could be manipulated in advantageous ways.

The ethanol industry uses enzymes to break starchy corn kernels down into glucose molecules, which, in turn, are fermented by microorganisms to produce usable fuel. Many researchers have been working on the possibility of getting more glucose by breaking down cellulose — the primary fibrous component of all plant cell walls — which is much more abundant than starch. However, McCann says their methods might be ignoring a valuable resource.

In addition to cellulose, cell walls contain many complex, poly-aromatic molecules called lignins. These compounds can get in the way of enzymes and catalysts that are trying to access cellulose and break it down into useful glucose. As a result, many labs have previously attempted to create plants that have more cellulose and fewer lignins in their cell walls.

But it turns out lignins are important for plant development and can be a valuable source of chemicals. As director of Purdue’s Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), McCann collaborated with chemists and chemical engineers in maximizing utilization of available biomass, including lignins. A nine-year grant from the U.S. Department of Energy funded C3Bio researchers’ work toward using chemical catalysts to transform both cellulose and lignins into liquid hydrocarbons, which are more energy-dense than ethanol and fully compatible with engines and existing fuel infrastructure.

In light of lignins’ usefulness, McCann and her colleagues are interested in alternative biofuel optimization strategies that don’t involve reducing plants’ lignin content. For example, if the researchers can modulate the strength of the “glue” between plant cells, they can make it easier for enzymes to access cellulose and also reduce the amount of energy needed for shredding the plant material. Another approach involves genetically engineering living, growing plants to incorporate chemical catalysts into their own cell walls, which will help eventual breakdown be faster and more complete.

“In both cases, this work is a reflection of synthetic biology thinking,” McCann says. “We don''t simply take what nature gives us; we think of ways to improve the performance of the biomass using the entirety of the genetics toolkit.”

McCann encourages others to think about “pathways of carbon.”

“If we think of how plants grow, they''re marvelous chemists. They''re taking in carbon dioxide from the atmosphere and water through their roots, and converting those simple molecules into highly complex cell wall structures,” she says. “When we think about making use of plant material in a biorefinery, a key goal is to make sure that every carbon atom that the plants so carefully trapped as part of their bodies ends up in a useful target molecule — whether that''s a liquid hydrocarbon or a component of some material with advanced properties.”

As synthetic biologists, McCann and her lab members think holistically about optimizing crops for producing food, biofuel and useful materials such as specialized chemicals. Regardless of end purpose, she says, she keeps three dimensions in mind when thinking about optimization: increasing yield per acre, increasing the quality and value of each plant and increasing the area of land on which crops can be grown profitably. The holistic approach is particularly important for ensuring that scientists and agricultural producers achieve these goals without compromising the global environment or local ecosystems.

“As a new bioeconomy emerges powered by the life sciences, plants are at the root of it in so many ways — both in terms of the energy they can provide and also the kinds of molecules that they can produce,” McCann says.

For now, she acknowledges that ending economic dependence on fossil fuels is a work in progress. The transition to a renewable energy economy will require multiple levels of change over time. For example, even if we made the switch entirely to electric cars, we would likely still need hydrocarbon fuels to mine lithium for the batteries and to run machines with longer lifetimes than cars, such as airplanes and ocean-going vessels. Yet she maintains a positive outlook.

“Something that gives me great optimism is that we''re going through a revolution in our ability to make new discoveries that lead to technologies that enable acceleration of the pace of discovery,” she says. “We’re going to find new ways of converting energy from one form to another that we haven’t even imagined. The capacity to make this substantial change from a fossil-based to a renewables-based economy is going to be there. We just need to drive it forward.”

McCann is in the Department of Biological Sciences, which is housed in the College of Science. 

Purdue University is a top public research institution developing practical solutions to today’s toughest challenges. Ranked the No. 6 Most Innovative University in the United States by U.S. News & World Report, Purdue delivers world-changing research and out-of-this-world discovery. Committed to hands-on and online, real-world learning, Purdue offers a transformative education to all. Committed to affordability and accessibility, Purdue has frozen tuition and most fees at 2012-13 levels, enabling more students than ever to graduate debt-free. See how Purdue never stops in the persistent pursuit of the next giant leap at purdue .

Note to Journalists: A photograph of Maureen McCann is available for journalists to use via a Google Drive folder.

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

There is good reason for fossil fuel folks to be nervous. Time is not on their side. People know that they need fossil fuels―I certainly did today when I put gas in my car―but most of us wish we had alternatives to these earth-damaging sources of energy. The market for alternatives is there and it will displace fossil fuels when (not if) renewable energy technology becomes cheaper and more convenient. At the start of 2017, Pew conducted a poll on attitudes toward renewable energy and in March 2017 Gallup conducted a similar poll. According to Gallup''s Frank Newport, the poll reported that:

Gallup''s explanation for the survey results is that fuel is so plentiful and cheap that people are willing to explore alternatives. While I am sure that is true, that does not explain the age effect. Why are young people so much more anti-fossil fuel and pro-renewable energy? I believe it is because they understand the negative environmental impacts of fossil fuels. They have lived their entire lives understanding these impacts and they believe that technology can help reduce those impacts. Young people have a fundamental belief in the transformative potential of new technology.

Gallup''s view that good economic news leads to greater support for environmental protection must be viewed in light of Pew''s age cohort analysis. Young people tend to have the fewest economic resources so economic plenty does not explain their view. Moreover, if the young maintain these views as they age, the views of older, more fossil fuel oriented people will be replaced by the views held by today''s millennials.

I am convinced that this transition is coming but know it would be a whole lot faster if we didn''t have a president who equated fossil fuels with wealth and national might. The effort to revive the fossil fuel industry in the United States is not helpful and we may lose our technological advantage in the renewable energy innovation race. But China, Japan, India and Europe are more than ready to fill in for us if we falter. Japan has no fossil fuels and is desperate to wean itself from nuclear in an energy politics dominated by the Fukushima disaster. There are plenty of alternatives to the U.S. federal government working right now to develop renewable energy.

Renewable energy will replace fossil fuels because they will be less expensive, as reliable, and as convenient as fossil fuels. The polls indicate that the latent market for renewables in already in place. The issue is not if, but when. The health of our planet requires that this transition take place as soon as possible. Government incentives could and should be used to accelerate this process. In the United States, these incentives will need to come from states and cities since it is clear our dysfunctional federal government will do little or nothing to help.

Saying that we will inevitably develop a reliable, economically feasible source of energy that does not produce air pollution is like saying that we will inevitably find a cure for cancer. These are physical problems, and there may be no solution to them.

Here’s what I think will probably happen: After about ten more years, when it becomes obvious that there are no nonpolluting sources of energy and that attempts to produce them are expensive failures, and when there aren’t any climate disasters in developed countries, we’re just going to accept the continued consumption of fossil fuels and politely pretend that we never were all that worried about climate change in the first place. The whole thing is going to be like the Y2K bug or the heterosexually driven AIDS epidemic. A monster-under-the- bed story that was fun for a while but which we will eventually outgrow.

Ian, your clearly in the fossil fuel industry and your comments reflect that. Statistically, renewables are growing 12x vs non renewables. This is FACT.

About Use of renewable energy sources can replace

About Use of renewable energy sources can replace

As the photovoltaic (PV) industry continues to evolve, advancements in Use of renewable energy sources can replace have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Use of renewable energy sources can replace for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Use of renewable energy sources can replace featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.