Biogas is a renewable source of

Biogas is produced by microorganisms, such as methanogens and sulfate-reducing bacteria, performing anaerobic respiration. Biogas can refer to gas produced naturally and industrially.
Contact online >>

Biogas is produced by microorganisms, such as methanogens and sulfate-reducing bacteria, performing anaerobic respiration. Biogas can refer to gas produced naturally and industrially.

In soil, methane is produced in anaerobic environments by methanogens, but is mostly consumed in aerobic zones by methanotrophs. Methane emissions result when the balance favors methanogens. Wetland soils are the main natural source of methane. Other sources include oceans, forest soils, termites, and wild ruminants.[6]

The purpose of industrial biogas production is the collection of biomethane, usually for fuel. Industrial biogas is produced either;

Manufacturing of biogas from intentionally planted maize has been described as being unsustainable and harmful due to very concentrated, intense and soil eroding character of these plantations.[8]

There are two key processes: mesophilic and thermophilic digestion which is dependent on temperature. In experimental work at University of Alaska Fairbanks, a 1000-litre digester using psychrophiles harvested from "mud from a frozen lake in Alaska" has produced 200–300 liters of methane per day, about 20–30% of the output from digesters in warmer climates.[9]

Biogas can be explosive when mixed in the ratio of one part biogas to 8–20 parts air. Special safety precautions have to be taken for entering an empty biogas digester for maintenance work. It is important that a biogas system never has negative pressure as this could cause an explosion. Negative gas pressure can occur if too much gas is removed or leaked; Because of this biogas should not be used at pressures below one column inch of water, measured by a pressure gauge.[citation needed]

Frequent smell checks must be performed on a biogas system. If biogas is smelled anywhere windows and doors should be opened immediately. If there is a fire the gas should be shut off at the gate valve of the biogas system.[13]

Landfill gas is produced by wet organic waste decomposing under anaerobic conditions in a similar way to biogas.[14][15]

The waste is covered and mechanically compressed by the weight of the material that is deposited above. This material prevents oxygen exposure thus allowing anaerobic microbes to thrive. Biogas builds up and is slowly released into the atmosphere if the site has not been engineered to capture the gas. Landfill gas released in an uncontrolled way can be hazardous since it can become explosive when it escapes from the landfill and mixes with oxygen. The lower explosive limit is 5% methane and the upper is 15% methane.[16]

The methane in biogas is 28[17] times more potent a greenhouse gas than carbon dioxide. Therefore, uncontained landfill gas, which escapes into the atmosphere may significantly contribute to the effects of global warming. In addition, volatile organic compounds (VOCs) in landfill gas contribute to the formation of photochemical smog.

Biochemical oxygen demand (BOD) is a measure of the amount of oxygen required by aerobic micro-organisms to decompose the organic matter in a sample of material being used in the biodigester as well as the BOD for the liquid discharge allows for the calculation of the daily energy output from a biodigester.

Another term related to biodigesters is effluent dirtiness, which tells how much organic material there is per unit of biogas source. Typical units for this measure are in mg BOD/litre. As an example, effluent dirtiness can range between 800 and 1200 mg BOD/litre in Panama.[citation needed]

From 1 kg of decommissioned kitchen bio-waste, 0.45 m3 of biogas can be obtained. The price for collecting biological waste from households is approximately €70 per ton.[18]

For 1000 kg (wet weight) of input to a typical biodigester, total solids may be 30% of the wet weight while volatile suspended solids may be 90% of the total solids. Protein would be 20% of the volatile solids, carbohydrates would be 70% of the volatile solids, and finally fats would be 10% of the volatile solids.

Ammonia (NH3) is produced from organic compounds containing nitrogen, such as the amino acids in proteins. If not separated from the biogas, combustion results in NOx emissions.[24]

Practical and cost-effective technologies to remove siloxanes and other biogas contaminants are available.[25]

Biogas can be used for electricity production on sewage works,[30] in a CHP gas engine, where the waste heat from the engine is conveniently used for heating the digester; cooking; space heating; water heating; and process heating. If compressed, it can replace compressed natural gas for use in vehicles, where it can fuel an internal combustion engine or fuel cells and is a much more effective displacer of carbon dioxide than the normal use in on-site CHP plants.[30][31][32]

Raw biogas produced from digestion is roughly 60% methane and 39% CO2 with trace elements of H2S: inadequate for use in machinery. The corrosive nature of H2S alone is enough to destroy the mechanisms.[24]

Methane in biogas can be concentrated via a biogas upgrader to the same standards as fossil natural gas, which itself has to go through a cleaning process, and becomes biomethane. If the local gas network allows, the producer of the biogas may use their distribution networks. Gas must be very clean to reach pipeline quality and must be of the correct composition for the distribution network to accept. Carbon dioxide, water, hydrogen sulfide, and particulates must be removed if present.[24]

There are four main methods of upgrading: water washing, pressure swing absorption, selexol absorption, and amine gas treating.[33] In addition to these, the use of membrane separation technology for biogas upgrading is increasing, and there are already several plants operating in Europe and USA.[24][34]

The most prevalent method is water washing where high pressure gas flows into a column where the carbon dioxide and other trace elements are scrubbed by cascading water running counter-flow to the gas. This arrangement could deliver 98% methane with manufacturers guaranteeing maximum 2% methane loss in the system. It takes roughly between 3% and 6% of the total energy output in gas to run a biogas upgrading system.

Gas-grid injection is the injection of biogas into the methane grid (natural gas grid). Until the breakthrough of micro combined heat and power two-thirds of all the energy produced by biogas power plants was lost (as heat). Using the grid to transport the gas to consumers, the energy can be used for on-site generation,[35] resulting in a reduction of losses in the transportation of energy. Typical energy losses in natural gas transmission systems range from 1% to 2%; in electricity transmission they range from 5% to 8%.[36]

Before being injected in the gas grid, biogas passes a cleaning process, during which it is upgraded to natural gas quality. During the cleaning process trace components harmful to the gas grid and the final users are removed.[37]

Biogas is part of the wet gas and condensing gas (or air) category that includes mist or fog in the gas stream. The mist or fog is predominately water vapor that condenses on the sides of pipes or stacks throughout the gas flow. Biogas environments include wastewater digesters, landfills, and animal feeding operations (covered livestock lagoons).

Ultrasonic flow meters are one of the few devices capable of measuring in a biogas atmosphere. Most of thermal flow meters are unable to provide reliable data because the moisture causes steady high flow readings and continuous flow spiking, although there are single-point insertion thermal mass flow meters capable of accurately monitoring biogas flows with minimal pressure drop. They can handle moisture variations that occur in the flow stream because of daily and seasonal temperature fluctuations, and account for the moisture in the flow stream to produce a dry gas value.

Biogas can be used in different types of internal combustion engines, such as the Jenbacher or Caterpillar gas engines.[43] Other internal combustion engines such as gas turbines are suitable for the conversion of biogas into both electricity and heat. The digestate is the remaining inorganic matter that was not transformed into biogas. It can be used as an agricultural fertiliser.

Biogas can be used as the fuel in the system of producing biogas from agricultural wastes and co-generating heat and electricity in a combined heat and power (CHP) plant. Unlike the other green energy such as wind and solar, the biogas can be quickly accessed on demand. The global warming potential can also be greatly reduced when using biogas as the fuel instead of fossil fuel.[44]

However, the acidification and eutrophication potentials produced by biogas are 25 and 12 times higher respectively than fossil fuel alternatives. This impact can be reduced by using correct combination of feedstocks, covered storage for digesters and improved techniques for retrieving escaped material. Overall, the results still suggest that using biogas can lead to significant reduction in most impacts compared to fossil fuel alternative. The balance between environmental damage and green house gas emission should still be considered while implicating the system.[45]

Projects such as NANOCLEAN are nowadays developing new ways to produce biogas more efficiently, using iron oxide nanoparticles in the processes of organic waste treatment. This process can triple the production of biogas.[46]

About Biogas is a renewable source of

About Biogas is a renewable source of

As the photovoltaic (PV) industry continues to evolve, advancements in Biogas is a renewable source of have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Biogas is a renewable source of for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Biogas is a renewable source of featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.