Renewable energy paragraph

We use energy every day of our lives - our electronic devices require electricity for power, our streetlights need the same for lighting, our vehicles require gasoline and diesel. We fuel our homes with domestic oil, propane or electricity from a national or local grid for lighting, heating and for
Contact online >>

We use energy every day of our lives - our electronic devices require electricity for power, our streetlights need the same for lighting, our vehicles require gasoline and diesel. We fuel our homes with domestic oil, propane or electricity from a national or local grid for lighting, heating and for powering our devices. You''re reading this article on a website that is hosted on a server that needs power, as does the computer with which you are viewing the site. The places we work use computers, phone networks, security systems and servers, as do our shopping malls, parking lots, sports stadiums, cars, airplanes and so on. All of these things require power from fuel.

From one perspective, the discovery and utilization of fire is a history of civilization, and a history of the use of renewable energy (4). Humanity continued in that fashion for many thousands of years before the discovery of oils (though obviously in smaller quantities than later) in antiquity and the mass drilling of oil during the industrial age. Other uses of renewables in antiquity include animal power (using cattle to drive ploughs or turn millstones) and wind for the sail that has driven trade for some 8,000 years of human history. The use of water sources, such as creating dams to harness the power of the fluid motion of water, is not a new idea either.

The concept of peak oil in the 1950s began a new drive towards renewables. Solar, hydro and others were seized upon by both environmentalists and industrialists. They were both equally concerned about the exponential growth in human population, in oil consumption, and realized that it is a finite resource and will run out (7) regardless of the size of the supply today. A growing environmental movement, the development of environmental sciences and a push against pollution (such as the Clean Air Act in the US and equivalents in other countries most of which passed in the 1960s-1970s) meant that more than ever before, renewable energy became not just a scientific innovation for the future, but a necessity.

Since then, there have been successive debates about whether we have reached peak oil. Many experts agree that it happened around 2008 (8). New pockets are getting fewer and fewer and smaller and smaller. Shockingly, demand has outstripped supply since 1986, spurring on economists, scientific researchers and environmental campaigners to hasten its demise by campaigning that what is in the ground to remain in the ground. Instability in oil-producing countries has led to fluctuations, particularly since the 1990s, and that has brought another issue to the world''s attention - energy security.

Energy security has been a major concern to world leaders since the end of the 20th century, but even more so since the beginning of the 21st century. The term refers to the link between each country''s national security, and the availability of that country to resources for energy production and consumption. If a country loses, or finds it has restricted access, to oil and other resources, instability is likely as energy is rationed. Energy security can be the result of armed conflict or political instability in gas or oil-producing countries, or a buying country having access restricted when a producing country deliberately cuts a supply.

According to a report by the International Energy Agency, the increase of amount of electricity produced from renewable sources increased from just over 13% in 2012 to 22% the following year. They also predict that that figure should hit 26% by 2020 (9). In terms of total generation, renewables accounts for 19% of our present usage. More clearly needs to be done though for the reasons stated below, but these figures are encouraging from the perspective of the use of renewables on its own. Most long-term forecast models predict that use will triple between 2012 and 2040, with a greater amount should the planet hit 2⁰ of warming.

There is still much to do though; between 2000 and 2012, the largest growth area in terms of resources was coal - easily the dirtiest form of fossil fuel. The most used resource amid fluctuating price coupled with what we now understand to have been over-production for several years, was oil.

Domestically, the US produces just over 13% of its electricity from renewable sources (10). As one of the world''s largest consumers of energy (at 11.4kw per person per year) and consuming around 25% of the world''s production every year, the situation in the US is immediate. Exponential growth of production in China, and equal exponential growth in coal mining there, should not be permitted to outstrip renewable use and it seems we are winning that particular battle; a UN report concluded in 2015 that renewable technology is now being produced on an industrial scale (11).

There is a large disparity of energy production by state in the US with some producing a lot more than others. If we look at the map of energy production below (https://) we can see just how much variation there is between the 50 states.

Idaho came out on top as it produces most of its electricity from geothermal sources thanks to the volcanic activity of its topography (12). Idaho is a success story of a renewable future and it reports some of the lowest energy prices (to the customer) of any state. Delaware is a net consumer of energy supplied by other states. However, a wind farm grant in 2012 now means that all of its domestic production comes from renewable sources.

Wyoming was reported as the lowest producer / user of renewable resources. The state has a long history of coal production and some 33% of the country''s coal supply comes from this single state. It also produces around 6% of the country''s natural gas supply. 0.34% of its total energy supply came from renewable sources, but also 11% of its electricity generation (13). Wyoming''s source of renewables is wind power. The story is similar for Alaska where the oil rich areas means a large supply of diesel to fuel the generators on which many state residents reply, though geothermal energy supply is also a boon for the state.

The first and main reason for why governments and businesses are keen to move to renewable energies as soon as possible is that fossil fuels are a finite resource. We may or may not have reached peak oil - the point at which demand outstrips supply -and by current figures, many experts seem to agree we did so around 2008 with only external factors creating fluctuations in demand making it difficult to predict precisely when it will run out. That is another debate entirely that our politicians and economists have argued for decades, and will continue to argue (14) for many years to come. Whichever way we look at it, fossil fuels will run out eventually and it will take some 10,000,000 years to replenish what we have used in around 150 years.

As the human population increases, our rate of consumption of these fossil fuels also increases. Geologists and others whose job it is to locate and access these pockets of crude oil are finding it increasingly difficult to locate and extract new sources. Whether we have 1 year or 100 years left of oil, many argue that what is left should remain in the ground because it is not sustainable - it will run out eventually and so we should prepare for a post-fossil fuel world now.

The most immediate problem, particularly in light of the COP21 agreement of 2016, and the changes we have seen to the climate in the last 150 years, is climate change and the carbon emissions that are forcing it (19). In the last few years especially, no part of the world has been untouched by freak weather conditions. Most continents have recorded record high temperatures in summer, record lows in winter and increased frequency of typhoons and hurricanes, record dry spells, drought and flooding. There is no doubt that these freak weather conditions are affecting every country (15).

Most renewable energy sources, and the technology used to harness them, are low carbon emission. In most cases, once installed they have minimal or no carbon output and can still provide our energy needs. We can never go fully carbon neutral as it takes resources to make a solar panel, build a dam and so on, but it is a critical and significant reduction of our carbon output. What we do need to do, is to take the steps we can to reduce our carbon footprint for international regulations, to help those in the developing world, and to protect ourselves against the freak weather. We also know that the ice caps are melting and the sea levels are rising which creates food shortages and national instability as well as being an expensive situation for our insurance.

Energy security is a relative newcomer to public perception when we consider the greater need for renewable energy (19). The beginning of this decade has seen instability in the Middle East. The Arab Spring swept across Algeria, Tunisia, Libya, Egypt and Syria leading to pro-democracy demonstrations. There are ongoing problems in Syria with the rise and spread of ISIS. Why have these political issues in other parts of the world encouraged the rest of the world to think about its energy plan?

The Middle East is one of the biggest suppliers of oil to the world. South America also produced oil, North America and South America supplies coal and the UK, Russia and other European Atlantic powers mine for gas. New tension between Russia and the west, firstly over Ukraine and secondly over Syria, has led to increased distrust between world powers. Being dependent on other countries for our energy supply is problematic in itself, but when international relations between supplier and supplied sour, increased wholesale prices threatening to destabilize the economy is the least that could happen (16, p5). If a supply is cut off, then disaster could strike. For this reason alone, we need spare capacity and multiple avenues of energy acquisition.

Energy security will become a much greater factor as fossil fuels begin to dwindle. More than ever before, demands on energy supply often outstrip supply of conventional production forcing prices up (3). It is expected that increased tension over acquisition and protection of resources could lead to global conflict. Some are already arguing that the crisis in Syria is less about campaign for democracy reform in a major Middle Eastern power, and more a result of ongoing regional climate crisis. Former farmers who have fled to Europe and beyond have cited drought as the major catalyst for the civil war in the country (17).

Related to some of the issues mentioned above, where renewable energy offers a constant and sustained supply (such as hydroelectric, wave power, solar and biofuels), energy prices are likely to remain stable and in turn, keep the economy stable (20). In many cases, energy produced from renewable sources is already cheaper than that produced by non-renewable means. Mentioned above, Idaho produces a large amount of energy from geothermal sources. Another example is Texas where energy produced from wind power is noticeably cheaper for the state''s citizens.

As fossil fuel supply gets harder to acquire, and prospectors search for new pockets of oil and have to drill longer and deeper to acquire it, there has been conflict between environmental groups and industry (21) and between governments and both groups (22) when local wildlife and environmentally sensitive areas are threatened. Here in the US, public consciousness and the need to protect our wildlife and natural landscapes means that many new developments are protested with concerns of environmental damage. Ongoing protests against fracking and new drilling in Europe and North America and recent examples. Though some renewables will have an environmental impact, many do not and when built, have no further impact - unlike ongoing drilling.

Oil, gas and coal drilling and mining have high levels of pollution that are pumped into local environments and the wider atmosphere, so while protestors attempt to prevent the building of pipelines or new prospecting in virgin areas and wilderness, it is as much about public health as it is about conservation. We have known for decades about the knock on effect of industrial processes for public health (20). Few renewables are entirely emission-free, but their output is much lower than conventional fossil fuel acquisition and processing.

Learn more about public health degrees and public health careers.

Renewables are by definition unlimited, but it is important to note that not all forms are environmentally friendly. Here, we look at some of the most common types of renewable energy and discuss their advantages and limitations.

Using water''s motion power to generate electricity is not a new concept; we have been doing so for around one hundred years and most countries have some form of water generated electricity source. There are two basic forms of using water for green energy needs. Hydroelectricity is produced by processing and controlling the flow of water through a dam. This is one of the most encouraging forms of renewable energy. Globally, it generates some 3,500 terawatts of power and has increased year on year since 2003. Hydroelectric power is likely to be one of our most common forms of energy production in the next few years and in the post oil world (23).

The building of dams at key strategic places as decided by environmental engineers means that energy generation can be increased or decreased depending on the needs of the community that uses it. During times of low use output may be reduced, and increased during times of high output need (23); these changes can be made quickly compared to oil production which has a delay due to the need to refine the raw product. The speed with which output of hydroelectricity can be changed is a major advantage to our growing energy needs.

Hydroelectricity is one of the lowest cost forms of energy as it requires no fuel; this means no mining, no processing, and no transportation cost. It was estimated in 2010 that the average cost of a kilowatt-hour of energy produced by hydroelectricity was 3-5c (23).

It is one of the cleanest forms of energy. Though the construction process of building and maintaining a dam will mean carbon emissions, this is the only output - still a significant reduction over the burning of fossil fuels (24). The relative cheapness of construction and maintenance, and the low cost of generation means it is used increasingly in both the developed and the developing world.

Finally, dams do not exist purely for their energy generation; they have many uses today. Flooding and drought are a major cause for concern with many countries having suffered both in recent years, often one season after another. Dams regulate water supply during floods and maintain water supplies during a drought (25). Building Aswan Dam may very well have prevented drought in Egypt in the 1980s when countries around them (Sudan, Ethiopia) suffered horrific drought.

In tropical areas, higher levels of methane output have been recorded from and around the reservoirs; this has been put down to the higher levels of anaerobic chemical processes (28). It''s important to note that methane output is much lower in more temperate areas.

Finally, the potential for failure of a dam is catastrophic. Should it burst, any settlement in the valley below would be flooded, leading possibly to loss of human life, destroyed houses, disrupted power supply to all the homes affected and possibly flooding of the winder landscape beyond, more ecological damage, more loss of human life. Thankfully, burst dams are rare and when they do occur, usually cause minimal disruption.

Tidal power is not yet common but it has been demonstrated that it is possible to generate electricity at sea by reacting to the ebb and flow of the oceans. This a common form of power generation across the Atlantic, in the eastern US states and Western Europe (with the UK being one of the early developers thanks to the high tidal ranges around the Orkney Islands). Its take up has not been wholesale elsewhere yet for a number of reasons. Tidal power generators come in four general types (29).

The first major advantage is that tidal power is more predictable than other well-known renewable systems such as wind and solar power thanks to the natural relationship between The Moon and the Earth. The pattern of the tides is predictable to a high degree of accuracy, a system on which we have been reliant for thousands of years of human existence. We have accurately measured these systems that people living in coastal areas where there is more than a minor variation, know the high and low tide times. This has always helped plan a number of maritime functions and now it is helping us begin to generate electricity (30).

The second advantage is that the volume of water on the planet is fairly constant and unlikely to run out, even without a significant temperature rise way beyond the 2-3⁰ predicted by climate scientists at present. Melting ice caps is not likely to affect these tidal ranges by a great degree, as the Moon is the only influencing factor on the fluctuations.

About Renewable energy paragraph

About Renewable energy paragraph

As the photovoltaic (PV) industry continues to evolve, advancements in Renewable energy paragraph have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Renewable energy paragraph for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Renewable energy paragraph featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.