The GEOTHERMICA HEATSTORE project aligns with these research and … Contact online >>
The GEOTHERMICA HEATSTORE project aligns with these research and
STES stores can serve district heating systems, as well as single buildings or complexes. Among seasonal storages used for heating, the design peak annual temperatures generally are in the range of 27 to 80 °C (81 to 180 °F), and the temperature difference occurring in the storage over the course of a year can be several tens of degrees. Some systems use a heat pump to help charge and discharge the storage during part or all of the cycle. For cooling applications, often only circulation pumps are used.
Sorption and thermochemical heat storage are considered the most suitable for seasonal storage due to the theoretical absence of heat loss between charging and discharging.[5] However, studies have shown that actual heat losses currently are usually significant.[6]
Examples for district heating include Drake Landing Solar Community where ground storage provides 97% of yearly consumption without heat pumps,[7]and Danish pond storage with boosting.[8]
There are several types of STES technology, covering a range of applications from single small buildings to community district heating networks. Generally, efficiency increases and the specific construction cost decreases with size.
UTES (underground thermal energy storage), in which the storage medium may be geological strata ranging from earth or sand to solid bedrock, or aquifers.UTES technologies include:
The IEA-ECES programme continues the work of the earlier International Council for Thermal Energy Storage which from 1978 to 1990 had a quarterly newsletter and was initially sponsored by the U.S. Department of Energy. The newsletter was initially called ATES Newsletter, and after BTES became a feasible technology it was changed to STES Newsletter.[36][37]
The other method, "annualized geothermal solar" (AGS) uses a separate solar collector to capture heat. The collected heat is delivered to a storage device (soil, gravel bed or water tank) either passively by the convection of the heat transfer medium (e.g. air or water) or actively by pumping it. This method is usually implemented with a capacity designed for six months of heating.
Architect Matyas Gutai[42] obtained an EU grant to construct a house in Hungary[43] which uses extensive water filled wall panels as heat collectors and reservoirs with underground heat storage water tanks. The design uses microprocessor control.
A number of homes and small apartment buildings have demonstrated combining a large internal water tank for heat storage with roof-mounted solar-thermal collectors. Storage temperatures of 90 °C (194 °F) are sufficient to supply both domestic hot water and space heating. The first such house was MIT Solar House #1, in 1939. An eight-unit apartment building in Oberburg, Switzerland was built in 1989, with three tanks storing a total of 118 m3 (4,167 cubic feet) that store more heat than the building requires. Since 2011, that design is now being replicated in new buildings.[44]
In Berlin, the "Zero Heating Energy House", was built in 1997 in as part of the IEA Task 13 low energy housing demonstration project. It stores water at temperatures up to 90 °C (194 °F) inside a 20 m3 (706 cubic feet) tank in the basement.[45]
A similar example was built in Ireland in 2009, as a prototype. The solar seasonal store[46] consists of a 23 m3 (812 cu ft) tank, filled with water,[47] which was installed in the ground, heavily insulated all around, to store heat from evacuated solar tubes during the year. The system was installed as an experiment to heat the world''s first standardized pre-fabricated passive house[48] in Galway, Ireland. The aim was to find out if this heat would be sufficient to eliminate the need for any electricity in the already highly efficient home during the winter months.
Based on improvements in glazing the Zero heating buildings are now possible without seasonal energy storage.
STES is also used extensively for the heating of greenhouses.[49][50][51] ATES is the kind of storage commonly in use for this application. In summer, the greenhouse is cooled with ground water, pumped from the "cold well" in the aquifer. The water is heated in the process, and is returned to the "warm well" in the aquifer. When the greenhouse needs heat, such as to extend the growing season, water is withdrawn from the warm well, becomes chilled while serving its heating function, and is returned to the cold well. This is a very efficient system of free cooling, which uses only circulation pumps and no heat pumps.
Annualized geo-solar (AGS) enables passive solar heating in even cold, foggy north temperate areas. It uses the ground under or around a building as thermal mass to heat and cool the building. After a designed, conductive thermal lag of 6 months the heat is returned to, or removed from, the inhabited spaces of the building. In hot climates, exposing the collector to the frigid night sky in winter can cool the building in summer.
The six-month thermal lag is provided by about three meters (ten feet) of dirt. A six-meter-wide (20 ft) buried skirt of insulation around the building keeps rain and snow melt out of the dirt, which is usually under the building. The dirt does radiant heating and cooling through the floor or walls. A thermal siphon moves the heat between the dirt and the solar collector. The solar collector may be a sheet-metal compartment in the roof, or a wide flat box on the side of a building or hill. The siphons may be made from plastic pipe and carry air. Using air prevents water leaks and water-caused corrosion. Plastic pipe doesn''t corrode in damp earth, as metal ducts can.
Usually it requires several years for the storage earth-mass to fully preheat from the local at-depth soil temperature (which varies widely by region and site-orientation) to an optimum Fall level at which it can provide up to 100% of the heating requirements of the living space through the winter. This technology continues to evolve, with a range of variations (including active-return devices) being explored. The listserve where this innovation is most often discussed is "Organic Architecture" at Yahoo.
This system is almost exclusively deployed in northern Europe. One system has been built at Drake Landing in North America. A more recent system is a Do-it-yourself energy-neutral home in progress in Collinsville, IL that will rely solely on Annualized Solar for conditioning.
About Underground heat storage
As the photovoltaic (PV) industry continues to evolve, advancements in Underground heat storage have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Underground heat storage for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Underground heat storage featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.