Energy in Ethiopia includes energy and electricity production, consumption, transport, exportation, and importation in the country of Ethiopia. Contact online >>
Energy in Ethiopia includes energy and electricity production, consumption, transport, exportation, and importation in the country of Ethiopia.
Ethiopia''s energy sector is crucial for its development, with wood being a primary energy source, leading to deforestation challenges. The country aims to address economic development and poverty by transitioning to alternative sources, particularly electricity.
The following table provides some of the most relevant energy sector numbers for Ethiopia, a developing country. The primary energy sector is by far the most important one in Ethiopia, with mainly wood used for cooking. That together with the population growth in Ethiopia results in issues like deforestation. Ethiopia aims at economic development and removal of poverty and to replace the use of wood by alternatives. This makes the secondary energy sector (with electricity) most relevant for these efforts. Almost all recent developments are taking place in the secondary energy sector, with the construction of mainly hydropower plants and power transmission lines being most visible.
Primary energy is produced through the consumption of natural resources, renewable and nonrenewable.
All imported primary energy sources are natural asphalt. That material is exclusively used for roads construction but is not used to produce primary energy (heat/enthalpy).
Nevertheless, the use of primary energy is also increasing. In part this is due to a more efficient use of agricultural wastes. Ethiopia has agricultural wastes "reserves" of 38 million tonnes per annum, but in 2011 only 6 million tonnes of them were used.[2][3] This changes now. Such wastes can be used in households or in industrial processes, for example in thermal processing.
Beyond the renewables, Ethiopia also has resources of nonrenewable primary energies (oil, natural gas, coal), but it does not exploit them. It also does not export them.
Ethiopia currently relies much on its reserves of wood for energy generation, see the table. Ethiopia in 2013 had 1,120 million tonnes of exploitable wood reserves.[2]
Ethiopia also has liquid and solid hydrocarbon reserves (fossil fuels): oil by 253 million tonnes of oil shales and more than 300 million tonnes of coal.[2] There are no plans in Ethiopia to exploit them and to use them for energy generation. The last time there were plans, in 2006, a 100 MW coal power plant (the Yayu coal power plant) with a nearby coal mine was under consideration. Due to severe environmental concerns all plans were stopped and cancelled in September 2006. The expected environmental destruction was considered to be way too severe.[4]
While coal reserves in Ethiopia are estimated to be at 300 million tons nationally.[5] 2020/2021 production reached 500,000 tons. Additionally, the country spends $200 million annually to import 670,000 tons, mainly from South Africa. Cement, textile, marble and ceramic factories are among the largest users of coal.There are ongoing plans to improve the coal calorific value and to increase production, aiming at substituting this import with the locally mined product.[6]
Natural gas makes up the most exploitable form of hydrocarbon reserves: a total of 4.1 trillion cubic feet (1.2×1011 m3) of natural gas reserves were found in two gas field in Ethiopia''s Ogaden basin, the Calub and Hilala gas fields. All the gas will be exported to China, production wells are under construction in 2017. The two gas fields should be in production by 2019.[needs update] Initial plans are to pump out 4 billion m3 per year.[2][7]
The currently used biomass / biofuels for primary energy production in most cases do not need to be transported over more than local distances. This can be done by simple roads. The reason is simple: Ethiopia was (and still is to some extent) a subsistence economy, where the vast majority of goods is produced and consumed locally within a few kilometers around the home of people.
A pipeline will be built to transport natural gas from the Calub and Hilala gas fields to a LNG terminal in the Port of Djibouti. This pipeline will be around 800 km in length and should be in operation by 2020. It will be a pipeline for 4 billion m3 per year.[7] There are also low-priority plans to connect the triangle Kenya, South Sudan and Ethiopia through crude oil pipelines as part of the Kenyan LAPSSET-corridor.
Secondary energy is produced by the consumption of secondary energy sources, more often called energy carriers. It is official policy worldwide and also in Ethiopia to replace primary energy through secondary energy and energy carriers are the vehicles to store this secondary energy. By doing so, the need to use primary energy for energy production in daily life will be replaced by the need to use energy carriers for energy production. This will relieve some pressure from the sources of primary energy in Ethiopia (wood, forests) and will also prevent the country from using its own domestic and nonrenewable primary energy such as coal and oil shales.
Energy carriers are obtained through a man-made conversion process from primary energy sources. Most suitable for the production of energy carriers are abundant and renewable primary energy sources (like sun, water, wind, etc.) while the use of precious and limited nonrenewable sources like oil is usually avoided as much as possible. A direct use of such abundant renewable primary energy sources (sun, water, etc...) is often not possible in technical processes, so it is more feasible to produce energy carriers to store and to transport energy that can later be consumed as secondary energy.
Diesel fuel is the main refined oil product in Ethiopia. It has a share of 20.1 TWh on the total of 37.3 TWh for refined oil products. Diesel is used for thermal power plants (oil power plant) and for private and public diesel generators in parts of the country, where electrical power from the national grid is an issue. Diesel fuel is the main fuel for trucking. As Ethiopia is leaving the state of a subsistence economy, the demand for the transportation of goods is quickly increasing. In 2017, there is no operational railway in Ethiopia, so the transportation of goods needs trucks and roads. Gasoline, to be used in cars, is only 13% (2.7 TWh) of the value for diesel.[1]
Bioethanol is produced in currently ~6 sugar factories in Ethiopia (planned are 12 with bioethanol production facilities in 2020), where sugarcane is converted into sugar and the remaining sugar molasses into bioethanol. The ethanol fuel energy balance from sugarcane molasses can be considered to be favorable. In addition, by using the output from existing cogeneration modules as part of the sugar production processes in Ethiopia, the bioethanol production does not require extra energy, which makes the bioethanol production even more favorable.[9]
After blending the gasoline, around 60–70 % of the ethanol is left over, this fuel goes into modern cook stoves as is provided to Ethiopia through Project Gaia. These cook stoves are burning fuel more efficiently, do not require wood as fuel and are thought to help protecting the forests of Ethiopia and to prevent deforestation.
The country focuses on the production of electricity from a mix of cheap and clean renewable primary energy sources like hydropower or wind power. Ethiopia has a total identified economically feasible potential of 45 GW of hydropower and 1,350 GW of wind power.[2][10] The identified economically feasible potential from photovoltaics amounts to 5.2 GW while that from geothermal energies amounts to ~7 GW.[2][11] Ethiopia plans to exploit these resources.
For a moderate average capacity factor of 0.4, that would mean a total electricity production potential of around 4,900 TWh, ~9 times the total primary energy the country did consume in 2014. As is obvious from such numbers, the country could replace most of its primary energy use through the use of electricity. More than that, the country could become a major exporter of electricity. It is an expressed wish of the Ethiopian government to become a world class exporter of large amounts of clean, cheap renewable energies in the future. However, going from 1% in 2010 to 4% in 2016 to 100% or even 900% in the (far) future is a long way to go.
In 2014, the country had an annual electricity production of 9,5 TWh. With this, Ethiopia was at position 101 and with an installed electricity generation capacity of 2.4 GW at the position 104 worldwide according to the CIA.[12] In July 2017, the so-called nameplatepower capacity, the overall installed power capacity, was up to 4,267.5 MW. 97.4% of that were from renewable primary energies like water and wind, with electricity from hydropower plants dominating with 89.7% and wind power with 7.6%. The completion of Gilgel Gibe III in 2015/16 added another 1870 MW capacity to the country''s power production, more than doubling the country''s production capacity from the year before.
Transport of electricity is done through electricity containers, such as power transmission lines and batteries. Especially the availability of a network of power transmission lines, a power grid, defines the amount of availability of electricity as the major source for secondary energy. Of course also in the case of Ethiopia. This is given through the degree of electrification. A higher electrification means an increasing demand for electricity.
In Ethiopia, the total demand for electrical power is increasing by ~30 % annually.[14] There is a race between available power generation capacities and the electrification and availability of electricity. In 2016 and 2017, while plenty of electricity was available through the addition of the new Gilgel Gibe III power plant to the national power grid, substations and power transmission lines were running out of capacity, with frequent outages and shortages which resulted in a wave of additions of substations and power transmission lines.[14][15]
In contrast to the primary energy sector, many sources of energy for the secondary energy sector are present both as renewable energies and in an abundant form. In total, Ethiopia has very good conditions for generating electricity through hydropower, wind power and geothermal power, all of them characterized by a very low CO2-emission. The levelized cost of electricity in recent years became somewhat favorable for these clean ways to generate electricity.
Constructing power stations is of high priority in Ethiopian politics. The country is permanently increasing its number of power stations with an increasing number in operation and under construction. The number of power stations in the planning stage is even larger. Ethiopia fully focuses on renewable energies, mainly from hydropower and wind power, to increase its installed electricity production capacity.
The levelized cost of electricity is often considered to be lowest for hydropower if compared to other possible types of electricity generation. In addition, hydropower is by far the most favorable way of producing electricity when looking at the energy returned on energy invested. This makes hydropower a favorable source of energy.
On the other hand, Ethiopia is often affected by droughts. Ethiopia is one of the most-drought prone countries in the world.[16][17] Hydropower projects (dams) help set up irrigation projects in certain parts of Ethiopia while buffering the impact of droughts. It is official policy to fully utilize hydropower in Ethiopia in combination with irrigation, so the double-positive effect of getting both cheap energy and sufficient water explains the focus on hydropower projects.
Ethiopia in 2013 assumed a total economically feasible potential of 45 GW of hydropower.[2] For a decent capacity factor of 0.4, one could expect an electrical energy generation of 158 TWh per annum in case of full exploitation of the feasible potential, which fits the expected numbers put forward by the Ethiopian Ministry of Water and Energy.[3] 8.5% of the 45 GW of assumed hydrowoper potential of Ethiopia was exploited in 2017, the additional irrigation area gained through these hydropower installations is unknown outside Ethiopia.
About Electricity generation ethiopia
As the photovoltaic (PV) industry continues to evolve, advancements in Electricity generation ethiopia have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Electricity generation ethiopia for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Electricity generation ethiopia featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.