
$80 Regular Members & Society Affiliates
$160 Regular Members & Society Affiliates$55 Graduate Students$25 Undergraduate Students
Electric car companies in North America plan to cut costs by adopting batteries made with the raw material lithium iron phosphate (LFP), which is less expensive than alternatives made with nickel and cobalt. Many carmakers are also trying to reduce their dependence on components from China, but nearly all LFP batteries and the raw materials used to make them currently come from China. A number of companies are now planning the first large-scale LFP factories in North America. Some are partnering with established companies, and others hope to introduce new technologies that will leapfrog Chinese competitors.
At the time, Phostech was making only about 1 metric ton (t) of LFP per year. Geoffroy mixed the precursors at a facility in Quebec and cooked the mixture in a kiln in Ontario, more than 700 km away. "Then I would put it in my car and drive home," he says. "I would go to FedEx to ship it to customers."
Eventually, Phostech graduated to bigger LFP factories, culminating in a 2,400 t per year plant near Montreal in 2012. Despite the progress, LFP never caught on as a chemistry for electric vehicle batteries in North America. Carmakers in the region opted instead for cathodes made with nickel and cobalt, which offer higher energy density and more range. In 2021, Johnson Matthey, which acquired the Montreal facility in 2015, put the plant up for sale.
Nickel and cobalt prices have increased substantially in the past few years, however, and nonprofit watchdogs say mining for the metals is connected to environmental problems and child labor. Nickel-based batteries are also more likely to catch fire and can''t be recharged as many times as LFP batteries.
After initially snubbing the chemistry, several big carmakers are now turning to LFP as a way to cut lithium-ion battery costs. Ford, Rivian, and Volkswagen have all unveiled plans to use LFP in North American cars, and General Motors is interested as well. A turning point came in October 2021, when Tesla, which accounted for two-thirds of US electric car registrations last year, revealed that it would switch to LFP batteries for all its standard-range vehicles globally.
In October, the Israeli chemical maker ICL Group announced plans to build an LFP cathode powder factory in Missouri. The Norwegian start-up Freyr Battery and Utah-based American Battery Factory plan to make LFP cathode material in the US for their battery factories in Georgia and Arizona, respectively. Meanwhile, China''s Gotion High-Tech hopes to establish LFP cathode material production in Michigan. Other Chinese manufacturers are also weighing how to leverage their expertise in North America.
In November, the start-up Nano One Materials finalized the purchase of the old Phostech LFP plant in Montreal, promising to introduce a manufacturing process that will require less energy and produce less waste than existing methods. Geoffroy, now Nano One''s chief commercialization officer, has returned to the factory to pilot the new process and scale it up.
"I designed it, built it, managed it, left it . . . and now we''re rebuilding," Geoffroy says. "For me, it''s a chance to do what I planned on doing with a process that I believe in."
The energy powering an electric car is released when electrons from a lithium-ion battery''s negatively charged electrode, called the anode, flow through the motor into the battery''s positively charged cathode. To balance the electrons leaving the anode, the cathode must simultaneously accept positively charged lithium ions from an electrolyte solution.
Batteries with anodes that produce lots of electrons, and cathodes that are eager to suck them up, have a high voltage, which allows them to store more energy in a given volume. Energy density can be increased by using cathode and anode materials that can store more lithium ions.
Because nickel and cobalt cathode materials can store lots of lithium and generate a high voltage, they were used in some of the first commercial lithium-ion batteries. But even in the early days of battery development, researchers saw room for improvement.
"We wanted to reduce the cost, so we pursued cathodes based on iron, which is abundant and a cheaper metal," says Arumugam Manthiram, a University of Texas at Austin researcher who worked with the battery trailblazer John Goodenough for decades and laid the groundwork for the class of cathodes that includes LFP.
In the mid-1990s, other researchers from Goodenough''s lab proposed using LFP, arguing that it was cheap and nontoxic. But the material wasn''t very conductive, which limited its utility. A few years later, building on the Goodenough lab''s initial discovery, scientists at Hydro-Québec and the University of Montreal solved the conductivity problem by coating LFP with carbon. Though LFP batteries still couldn''t match the energy density of nickel-based batteries, their lower cost made them appealing.
In 2003, Hydro-Québec and the University of Montreal gave Phostech the first license to manufacture LFP commercially. But investors backing North American projects were cautious, and progress was slow. "We had half a million dollars to survive for 3 years," Geoffroy recalls. "I was paying myself by selling samples."
Things accelerated for Phostech in 2005, when the German chemical company Süd-Chemie, which was developing a different LFP manufacturing process, bought a majority stake in Phostech. Süd-Chemie financed pilot facilities and the 2,400 t plant near Montreal, but the German firm''s hydrothermal process turned out to be more expensive than Phostech''s solid-state method. Clariant acquired Süd-Chemie in 2012 and promptly sold the LFP business to Johnson Matthey.
Geoffroy left Johnson Matthey in 2019 without seeing the plant become big enough to meaningfully supply the auto industry. "When we bought the land in 2007 there was expansion planned," he recalls. "We never expanded."
Other North American companies also sought to capitalize on the discovery of LFP, with limited success. In 2009, the Massachusetts Institute of Technology spinout A123 Systems raised $350 million in an initial public offering, aiming to manufacture a modified version of LFP in Michigan. But not enough carmakers were interested, and A123 went bankrupt in 2012. Most of the firm''s assets were acquired by China''s Wanxiang Group.
LFP was invented and developed in North America, but Chinese companies were the first to place a big bet on the technology, according to Karim Zaghib, a battery scientist at Concordia University who worked for Hydro-Québec in the 1990s.
After successfully installing LFP batteries on buses ahead of the 2008 Beijing Olympics, China, impressed by the chemistry''s improved fire safety compared with nickel-based batteries, made LFP production a national project, Zaghib says. "The Chinese government and Chinese companies invested a lot in LFP."
And the material has been a hit. In 2021, more than 40% of electric vehicles sold in China had LFP in their batteries, according to the market research firm Adamas Intelligence. "In China, small electric vehicles . . . with a range of 120 km are very popular," says Alla Kolesnikova, head of data analytics at Adamas. "The majority of them are powered by LFP."
Most factories in China produce LFP using a solid-state process that starts with the reaction of iron sulfate and phosphoric acid to produce iron phosphate. Usually the iron phosphate is then mixed with lithium carbonate and a source of carbon that forms the conductive coating.
That mixture is then sent in a ceramic crucible into a kiln, where it reaches temperatures of 700–800 °C. The heat sinters the material, changing it from an amorphous mixture into the olivine structure that allows it to function as a cathode.
Between 2010 and 2016, China''s capacity to make LFP cells, or individual battery units, increased 100-fold, according to Cormac O''Laoire, managing director of the Hong Kong–based battery consulting firm Electrios Energy. By 2021, he says, Chinese companies were producing over 90% of the world''s LFP powder.
In a little over 10 years, one Chinese company, Shenzhen Dynanonic, increased its annual LFP capacity from 500 t to 265,000 t. Unlike other firms in China, Dynanonic uses a solution-based production method that resembles the hydrothermal process Süd-Chemie used in Montreal.
Suki Zhang, Dynanonic''s account manager for overseas markets, says most of its growth has come in the past 2 years, a period when Chinese battery manufacturers, such as Contemporary Amperex Technology Co. Limited (CATL), were investing heavily in LFP. "We have so many batteries here," she says. "The demand is a big reason why we built LFP in China."
Chinese factories are able to make LFP cheaply, in part because the consortium of organizations that owned the relevant patents—including France''s National Center for Scientific Research, Hydro-Québec, Johnson Matthey, and the University of Montreal—agreed not to charge Chinese companies licensing fees if they sold only in China, according to an International Energy Agency report. In contrast, the Taiwan-based LFP maker Aleees says it paid about 10% of its sales in licensing fees until recently.
The intellectual property was held more closely in other parts of the world. "That may have limited some of the development of LFP in the US and Europe," says Anantha Desikan, ICL''s chief technology officer.
James Frith, a principal at the venture capital firm Volta Energy Technologies, points out that China has other advantages. Iron sulfate is cheap there because it''s available as a by-product of titanium dioxide production, which isn''t the case outside China, where most makers of the pigment use a different process. Frith says less-stringent environmental regulations in China can also reduce costs.
Over the past few years, the core patents behind LFP manufacturing have expired, removing a barrier for non-Chinese companies interested in producing LFP. O''Laoire says the expirations also make it easier for Chinese companies to serve markets where the patents were previously enforced.
About Trinidad and tobago lithium-iron-phosphate batteries lfp
As the photovoltaic (PV) industry continues to evolve, advancements in Trinidad and tobago lithium-iron-phosphate batteries lfp have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Trinidad and tobago lithium-iron-phosphate batteries lfp for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Trinidad and tobago lithium-iron-phosphate batteries lfp featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.
Related Contents